Structural basis of perturbed pKa values of catalytic groups in enzyme active sites.

نویسندگان

  • Thomas K Harris
  • George J Turner
چکیده

In protein and RNA macromolecules, only a limited number of different side-chain chemical groups are available to function as catalysts. The myriad of enzyme-catalyzed reactions results from the ability of most of these groups to function either as nucleophilic, electrophilic, or general acid-base catalysts, and the key to their adapted chemical function lies in their states of protonation. Ionization is determined by the intrinsic pKa of the group and the microenvironment created around the group by the protein or RNA structure, which perturbs its intrinsic pKa to its functional or apparent pKa. These pKa shifts result from interactions of the catalytic group with other fully or partially charged groups as well as the polarity or dielectric of the medium that surrounds it. The electrostatic interactions between ionizable groups found on the surface of macromolecules are weak and cause only slight pKa perturbations (<2 units). The sum of many of these weak electrostatic interactions helps contribute to the stability of native or folded macromolecules and their ligand complexes. However, the pKa values of catalytic groups that are found in the active sites of numerous enzymes are significantly more perturbed (>2 units) and are the subject of this review. The magnitudes of these pKa perturbations are analyzed with respect to the structural details of the active-site microenvironment and the energetics of the reactions that they catalyze.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of PKA binding sites in cAMP-signaling pathway using structural protein-protein interaction networks

Backgroud: Protein-protein interaction, plays a key role in signal transduction in signaling pathways. Different approaches are used for prediction of these interactions including experimental and computational approaches. In conventional node-edge protein-protein interaction networks, we can only see which proteins interact but &lsquo;structural networks&rsquo; show us how these proteins inter...

متن کامل

Uncovering the determinants of a highly perturbed tyrosine pKa in the active site of ketosteroid isomerase.

Within the idiosyncratic enzyme active-site environment, side chain and ligand pKa values can be profoundly perturbed relative to their values in aqueous solution. Whereas structural inspection of systems has often attributed perturbed pKa values to dominant contributions from placement near charged groups or within hydrophobic pockets, Tyr57 of a Pseudomonas putida ketosteroid isomerase (KSI) ...

متن کامل

THE CALCIUM BINDING SITES OF THE BAKERS' YEAST TRANSKETOLASE

The calcium binding sites of Bakers' Yeast Transketolase (TK) was elucidated by estimating the pKa values of the functional groups that bind to calcium. These pKa's were found to be 6.25 and 7.2 relating to the pKa's of the two immidazol moieties of histidine residues on the enzyme. The rate of the binding of calcium to the enzyme was obtained separately as a function of pH. Maximum values ...

متن کامل

Understanding enzyme superfamilies. Chemistry As the fundamental determinant in the evolution of new catalytic activities.

Prior to the discovery in 1990 that mandelate racemase (MR) and muconate-lactonizing enzyme (MLE) are structurally similar enzymes that catalyze different overall reactions (1), structurally related enzymes were assumed to catalyze identical chemical reactions but, perhaps, with distinct substrate specificities. For example, all of the members of the serine protease superfamily were known to ca...

متن کامل

Structural Basis for the Regulation of Protein Kinase A by Activation Loop Phosphorylation*

The catalytic subunit of cAMP-dependent protein kinase (PKA) is a member of the AGC group of protein kinases. Whereas PKA has served as a structural model for the protein kinase superfamily, all previous structures of the catalytic subunit contain a phosphorylated activation loop. To understand the structural effects of activation loop phosphorylation at Thr-197 we used a PKA mutant that does n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IUBMB life

دوره 53 2  شماره 

صفحات  -

تاریخ انتشار 2002